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Using bismuth germanate as an example, it has been shown that longitudinal and quasitransverse waves
propagating in the (11

_
0) crystallographic plane of a cubically anisotropic medium are piezoelectrically active.

Reciprocal-velocity surfaces and three-dimensional wave fronts for quasilongitudinal and quasitransverse waves
propagating in cubically anisotropic piezoelectric materials have been constructed in [1]. In the present work, we give
results of investigations of the regularities of propagation of elastic and piezoactive waves in the coordinate plane x1

′

= 0 of the (x1
′ , x2

′ , x3
′ ) system described in [2]. According to [1], the characteristic equation will be written in the fol-

lowing form:
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We divide both sides of (1) by g6 (g = √ p1
2 + p2

2 + p3
2 ≠ 0). As a result, we will have
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Here the formulas for q~i follow from (2) upon the replacement of τi by τ~i, i = 1, 3
___

, in them.
The solution of (3) will be represented in the following form:
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Formulas (4) enable us to construct dimensionless reciprocal-velocity surfaces and their sections by the planes
passing through the origin of coordinates. A comparative analysis of the reciprocal-velocity surfaces shows that
v1 > v2 ≥ v3; therefore, we will assume [3] that a quasilongitudinal wave propagates with a velocity v1, whereas qua-
sitransverse waves propagate with velocities v2 and v3. Figure 1 gives the section of the surface of reciprocal velocities
1/v3 by the coordinate plane x1

 ′ = 0 of the coordinate system (x1
 ′, x2

 ′, x3
 ′) for bismuth germanate (a = 5.02, b = 1.12,

and K = 0.45; the numerical data have been taken from [3]).
From Fig. 1 it is clear that the quasitransverse wave propagating with a velocity v3 is piezoactive in the plane

x1
 ′ = 0. The interval between curves 1 and 2 on the x2

 ′ axis coincides with the largest distance between the reciprocal-
velocity curves in the plane x3 = 0, which have been constructed in [2] for the case of plane deformation of a cubi-
cally anisotropic medium. The absence of the piezoactivity of quasilongitudinal and quasitransverse waves in the
coordinate plane x3 = 0 has also been noted in [2]. However, the sections of the surfaces of reciprocal velocities
1/v1 and 1/v2 by non-coordinate planes show that the piezoelectric effect exerts an influence on the change in the ve-
locities vm of propagation of these types of waves. Figure 2 gives the velocity ratios vm

 ⁄ v~m of waves propagating in
the plane x1

 ′ = 0 of bismuth germanate as functions of the angle of inclination of the normal to the characteristic sur-
face (v~m are the velocities of propagation of elastic waves without allowance for the piezoeffect).

We find the coordinates of wave-front points reached by the energy of wave disturbance by the instant of
time t. For this purpose we express p0 from Eq. (1):

Fig. 1. Surfaces of reciprocal velocities 1/v3 in the plane x1
 ′ = 0 for bismuth

germanate with allowance for the piezoeffect (1) and without allowance for it (2).

Fig. 2. Ratios vm
 ⁄ v~m vs. angle of inclination of the normal to the characteristic

surface α for quasilongitudinal and quasitransverse waves propagating in the
plane x0

 ′ = 0 for bismuth germanate.
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___
 points to the type of elastic wave.

Differentiating p0 with respect to pi and integrating the resulting expressions with respect to the time t, we
obtain the expressions sought for the dimensionless coordinates:
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The superscript m in formulas (6) points to the type of wave: 1 corresponds to a quasilongitudinal wave and 2 and 3
correspond to quasitransverse waves.

The coefficients qki, k = 1, 3
___

, with account for pk = gnk will be represented in the form
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Fig. 3. Front of the quasitransverse wave propagating with a velocity v2 in the
plane x1

 ′ = 0 for bismuth germanate with allowance for the piezoeffect (1) and
without allowance for it (2).
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Figure 3 shows the section of the front of a quasitransverse wave propagating with a velocity v3 by the plane
x1

 ′ = 0 for bismuth germanate with allowance for the piezoeffect and without allowance for it at the instant of time t
= 1 sec.

It is seen that the quasitransverse wave propagating with a velocity v3 is piezoactive in the plane x1
 ′ = 0. The

influence of the piezoelectric effect leads to a decrease of 4o in the lacuna angle (by the lacuna angle we mean the
angle between two rays emerging from the origin of coordinates and passing through the cuspidal points [4] on the
wave front).

Also, formulas (6) enable us to determine the dimensionless ray velocities of propagation of quasilongitudinal
and quasitransverse waves in a piezoactive cubically anisotropic medium:

gm = √ (x1
(m))2

 + (x2
(m))2

 + (x3
(m))2  ⁄ t . (7)

Let us investigate the influence of the piezoeffect on the change in the ray velocities of elastic waves, using
bismuth germanate as an example. Figure 4 gives the dependences of the gm

 ⁄ g~m ratios for this material for the waves
propagating in the plane x1

 ′ = 0 (g~m in the ray velocity of propagation of the elastic wave without allowance for the
piezoelectric effect, i.e., for the coefficient K = 0).

From Figs. 2 and 4 it is clear that the piezoactivity of the quasilongitudinal wave propagating in bismuth ger-
manate is low, since the maximum increase in the velocities v1 and g1 in the plane x1

 ′ = 0 amounts to 1.75 and 0.2%
respectively (in the coordinate planes, this wave is not piezoelectrically active). The influence of the piezoelectric ef-
fect on the change in the velocities of propagation of the quasitransverse waves in the plane x1

′  = 0 is larger; thus, the
maximum increases in the velocities g2 and g3 amount to 3.75 and 6% respectively as compared to g~2 and g~3.

In closing, we note that a comparative analysis of the velocity ratios gm
 ⁄ vm shows that we have gm

 ⁄ vm ≥ 1
for the corresponding values of the angle of inclination of the normal to the characteristic surface.

This work was carried out with support from the Belarusian Republic Foundation for Basic Research (project
No. F03M-171).

Fig. 4. Ratios of the ray velocities gm
 ⁄ g~m vs. angle of inclination of the nor-

mal to the characteristic surface α for the quasilongitudinal and quasitransverse
waves propagating in the plane x1

 ′ = 0.
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NOTATION

A1, A2, and A4, elasticity constants of the cubically anisotropic medium; a = A1
 ⁄ A4; b = A2

 ⁄ A4; c2 =
√A4

 ⁄ ρ , velocity of propagation of the transverse wave; e, piezoelectric modulus; K = 4e2 ⁄ εsA4; ni = pi
 ⁄ g, direction

cosines of the normal to the characteristic surface; v = V/c2, dimensionless velocity of propagation of the discontinuity
surface; V = −p0

 ⁄ g; εs, permittivity; τ1 = p1
2 + p2

2 + p3
2; τ2 = p1
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2p3
2 + p1
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